Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Environ Int ; 184: 108447, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38246039

ABSTRACT

INTRODUCTION: Although previous studies investigated the potential adverse effects of endocrine-disrupting chemicals (EDCs) on biological age acceleration and aging-related diseases, the mixed effect of multiple types of EDCs on biological age acceleration, including its potential underlying mechanism, remains unclear. METHODS: Data from the National Health and Nutrition Examination Survey (NHANES) were used to analyze biological age measures, including Klemera-Doubal method biological age (KDM-BA), phenotypic age, and homeostatic dysregulation (HD). Weight quantile sum (WQS) regression was performed to screen biological age-related EDCs (BA-EDCs) and assess the mixed effect of BA-EDCs on biological age acceleration and aging-related disease. Targets of BA-EDCs were obtained from three databases, while heart aging-related genes were obtained from the Aging Anno database. Protein-protein interaction (PPI) network and MCODE algorithm were applied to identify potential interactions between BA-EDC targets and heart aging-related genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to identify related pathways. RESULTS: This cross-sectional study included 1,439 participants. A decile increase in BA-EDCs co-exposure was associated with 0.31 years and 0.17 years of KDM-BA and phenotypic age acceleration, respectively. The mixed effect of BA-EDCs was associated with an increased prevalence of atherosclerotic cardiovascular disease (ASCVD). Vitamins C and E demonstrated a significant interaction effect on the association between BA-EDCs and KDM-BA acceleration. PPI network and functional enrichment analysis indicated that the AGE-RAGE signaling pathway in diabetic complications was significantly enriched. CONCLUSION: Our results showed that the co-exposure effect of BA-EDCs was associated with biological age acceleration and ASCVD, with the AGE-RAGE signaling pathway being the underlying mechanism. Vitamins C and E may also be an actionable target for preventing EDC-induced biological aging.


Subject(s)
Endocrine Disruptors , Humans , Nutrition Surveys , Endocrine Disruptors/toxicity , Cross-Sectional Studies , Aging , Vitamins
3.
Adv Biol (Weinh) ; 8(2): e2300185, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37884455

ABSTRACT

This study compares the impact of two isolation methods, ultracentrifugation (UC) and size exclusion chromatography (SEC), on small extracellular vesicles (sEVs) from primary human cardiac mesenchymal-derived progenitor cells (CPCs). sEV_UC and sEV_SEC exhibit similar size, marker expression, and miRNA cargo, but sEV_UC contains notably higher total protein levels. In vitro assays show that sEV_UC, despite an equal particle count, induces more robust ERK phosphorylation, cytoprotection, and proliferation in iPS-derived cardiomyocytes (iPS-CMs) compared to sEV_SEC. sEV_UC also contains elevated periostin (POSTN) protein levels, resulting in enhanced focal adhesion kinase (FAK) phosphorylation in iPS-CMs. Importantly, this effect persists with treatment with soluble free-sEV protein fraction from SEC (Prote_SEC), indicating that free proteins like POSTN in sEV_UC enhance FAK phosphorylation. In vivo, sEV contamination with soluble proteins doesn't affect cardiac targeting or FAK phosphorylation, underscoring the intrinsic tissue targeting properties of sEV. These findings emphasize the need for standardized sEV isolation methods, as the choice of method can impact experimental outcomes, particularly in vitro.


Subject(s)
Carcinoma , Choroid Plexus Neoplasms , Extracellular Vesicles , Humans , Focal Adhesion Protein-Tyrosine Kinases , Chromatography, Gel
4.
Cardiovasc Res ; 119(17): e164-e166, 2023 12 30.
Article in English | MEDLINE | ID: mdl-38006323

Subject(s)
Pericardium , Regeneration
5.
Cardiovasc Res ; 119(17): 2729-2742, 2023 12 30.
Article in English | MEDLINE | ID: mdl-37742057

ABSTRACT

AIMS: The heart rejuvenating effects of circulating growth differentiation factor 11 (GDF11), a transforming growth factor-ß superfamily member that shares 90% homology with myostatin (MSTN), remains controversial. Here, we aimed to probe the role of GDF11 in acute myocardial infarction (MI), a frequent cause of heart failure and premature death during ageing. METHODS AND RESULTS: In contrast to endogenous Mstn, myocardial Gdf11 declined during the course of ageing and was particularly reduced following ischaemia/reperfusion (I/R) injury, suggesting a therapeutic potential of GDF11 signalling in MI. Unexpectedly, boosting systemic Gdf11 by recombinant GDF11 delivery (0.1 mg/kg body weight over 30 days) prior to myocardial I/R augmented myocardial infarct size in C57BL/6 mice irrespective of their age, predominantly by accelerating pro-apoptotic signalling. While intrinsic cardioprotective signalling pathways remained unaffected by high circulating GDF11, targeted transcriptomics and immunomapping studies focusing on GDF11-associated downstream targets revealed attenuated Nkx2-5 expression confined to CD105-expressing cells, with pro-apoptotic activity, as assessed by caspase-3 levels, being particularly pronounced in adjacent cells, suggesting an indirect effect. By harnessing a highly specific and validated liquid chromatography-tandem mass spectrometry-based assay, we show that in prospectively recruited patients with MI circulating GDF11 but not MSTN levels incline with age. Moreover, GDF11 levels were particularly elevated in those at high risk for adverse outcomes following the acute event, with circulating GDF11 emerging as an independent predictor of myocardial infarct size, as estimated by standardized peak creatine kinase-MB levels. CONCLUSION: Our data challenge the initially reported heart rejuvenating effects of circulating GDF11 and suggest that high levels of systemic GDF11 exacerbate myocardial injury in mice and humans alike. Persistently high GDF11 levels during ageing may contribute to the age-dependent loss of cardioprotective mechanisms and thus poor outcomes of elderly patients following acute MI.


Subject(s)
Growth Differentiation Factors , Heart Injuries , Myocardial Infarction , Aged , Animals , Humans , Mice , Aging/metabolism , Bone Morphogenetic Proteins , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , Heart , Heart Injuries/complications , Heart Injuries/metabolism , Mice, Inbred C57BL , Myocardial Infarction/complications , Myocardial Infarction/metabolism
6.
Free Radic Biol Med ; 208: 718-727, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37739138

ABSTRACT

Physical Exercise (EXR) has been shown to have numerous beneficial effects on various systems in the human body. It leads to a decrease in the risk of mortality from chronic diseases, such as cardiovascular disease, cancer, metabolic and central nervous system disorders. EXR results in improving cardiovascular fitness, cognitive function, immune activity, endocrine action, and musculoskeletal health. These positive effects make EXR a valuable intervention for promoting overall health and well-being in individuals of all ages. These beneficial effects are partially mediated by the role of the regular EXR in the adaptation to redox homeostasis counteracting the sudden increase of ROS, the hallmark of many chronic diseases. EXR can trigger the release of numerous humoral factors, e.g. protein, microRNA (miRs), and DNA, that can be shuttled as cargo of Extracellular vesicles (EVs). EVs show different cargo modification after oxidative stress stimuli as well as after EXR. In this review, we aim to highlight the main studies on the role of EVs released during EXR and oxidative stress conditions in enhancing the antioxidant enzymes pathway and in the decrease of oxidative stress environment mediated by their cargo.


Subject(s)
Extracellular Vesicles , MicroRNAs , Humans , Oxidative Stress , Extracellular Vesicles/metabolism , Exercise , MicroRNAs/genetics , MicroRNAs/metabolism , Chronic Disease
7.
Redox Biol ; 63: 102737, 2023 07.
Article in English | MEDLINE | ID: mdl-37236143

ABSTRACT

Cardiovascular diseases (CVD) can cause various conditions, including an increase in reactive oxygen species (ROS) levels that can decrease nitric oxide (NO) availability and promote vasoconstriction, leading to arterial hypertension. Physical exercise (PE) has been found to be protective against CVD by helping to maintain redox homeostasis through a decrease in ROS levels, achieved by increased expression of antioxidant enzymes (AOEs) and modulation of heat shock proteins (HSPs). Extracellular vesicles (EVs) circulating in the body are a major source of regulatory signals, including proteins and nucleic acids. Interestingly, the cardioprotective role of EVs released after PE has not been fully described. The aim of this study was to investigate the role of circulating EVs, obtained through Size Exclusion Chromatography (SEC) of plasma samples from healthy young males (age: 26.95 ± 3.07; estimated maximum oxygen consumption rate (VO2max): 51.22 ± 4.85 (mL/kg/min)) at basal level (Pre_EVs) and immediately after a single bout of endurance exercise (30' treadmill, 70% heart rate (HR) -Post_EVs). Gene ontology (GO) analysis of proteomic data from isolated EVs, revealed enrichment in proteins endowed with catalytic activity in Post_EVs, compare to Pre_EVs, with MAP2K1 being the most significantly upregulated protein. Enzymatic assays on EVs derived from Pre and Post samples showed increment in Glutathione Reductase (GR) and Catalase (CAT) activity in Post_EVs. At functional level, Post_EVs, but not Pre_EVs, enhanced the activity of antioxidant enzymes (AOEs) and reduced oxidative damage accumulation in treated human iPS-derived cardiomyocytes (hCM) at basal level and under stress conditions (Hydrogen Peroxide (H2O2) treatment), resulting in a global cardioprotective effect. In conclusion, our data demonstrated, for the first time, that a single 30-min endurance exercise is able to alter the cargo of circulating EVs, resulting in cardioprotective effect through antioxidant activity.


Subject(s)
Cardiovascular Diseases , Extracellular Vesicles , Male , Humans , Young Adult , Adult , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Proteomics , Cardiovascular Diseases/metabolism
8.
Methods Protoc ; 6(3)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37218905

ABSTRACT

The last 18 years have brought an increasing interest in the therapeutic use of perinatal derivatives (PnD). Preclinical studies used to assess the potential of PnD therapy include a broad range of study designs. The COST SPRINT Action (CA17116) aims to provide systematic and comprehensive reviews of preclinical studies for the understanding of the therapeutic potential and mechanisms of PnD in diseases and injuries that benefit from PnD therapy. Here we describe the publication search and data mining, extraction, and synthesis strategies employed to collect and prepare the published data selected for meta-analyses and reviews of the efficacy of PnD therapies for different diseases and injuries. A coordinated effort was made to prepare the data suitable to make statements for the treatment efficacy of the different types of PnD, routes, time points, and frequencies of administration, and the dosage based on clinically relevant effects resulting in clear increase, recovery or amelioration of the specific tissue or organ function. According to recently proposed guidelines, the harmonization of the nomenclature of PnD types will allow for the assessment of the most efficient treatments in various disease models. Experts within the COST SPRINT Action (CA17116), together with external collaborators, are doing the meta-analyses and reviews using the data prepared with the strategies presented here in the relevant disease or research fields. Our final aim is to provide standards to assess the safety and clinical benefit of PnD and to minimize redundancy in the use of animal models following the 3R principles for animal experimentation.

9.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108672

ABSTRACT

Both progression from the early pathogenic events to clinically manifest cardiovascular diseases (CVD) and cancer impact the integrity of the vascular system. Pathological vascular modifications are affected by interplay between endothelial cells and their microenvironment. Soluble factors, extracellular matrix molecules and extracellular vesicles (EVs) are emerging determinants of this network that trigger specific signals in target cells. EVs have gained attention as package of molecules with epigenetic reversible activity causing functional vascular changes, but their mechanisms are not well understood. Valuable insights have been provided by recent clinical studies, including the investigation of EVs as potential biomarkers of these diseases. In this paper, we review the role and the mechanism of exosomal epigenetic molecules during the vascular remodeling in coronary heart disease as well as in cancer-associated neoangiogenesis.


Subject(s)
Cardiovascular Diseases , Extracellular Vesicles , Neoplasms , Humans , Endothelial Cells/pathology , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Neoplasms/genetics , Neoplasms/pathology , Cardiovascular Diseases/pathology , Epigenesis, Genetic , Tumor Microenvironment/genetics
10.
Commun Biol ; 6(1): 291, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934210

ABSTRACT

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) constitute a mixed population of ventricular-, atrial-, nodal-like cells, limiting the reliability for studying chamber-specific disease mechanisms. Previous studies characterised CM phenotype based on action potential (AP) morphology, but the classification criteria were still undefined. Our aim was to use in silico models to develop an automated approach for discriminating the electrophysiological differences between hiPSC-CM. We propose the dynamic clamp (DC) technique with the injection of a specific IK1 current as a tool for deriving nine electrical biomarkers and blindly classifying differentiated CM. An unsupervised learning algorithm was applied to discriminate CM phenotypes and principal component analysis was used to visualise cell clustering. Pharmacological validation was performed by specific ion channel blocker and receptor agonist. The proposed approach improves the translational relevance of the hiPSC-CM model for studying mechanisms underlying inherited or acquired atrial arrhythmias in human CM, and for screening anti-arrhythmic agents.


Subject(s)
Atrial Fibrillation , Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac , Constriction , Reproducibility of Results
11.
Atherosclerosis ; 354: 41-52, 2022 08.
Article in English | MEDLINE | ID: mdl-35830762

ABSTRACT

BACKGROUND AND AIMS: DNA methylation is associated with gene silencing, but its clinical role in cardiovascular diseases (CVDs) remains to be elucidated. We hypothesized that extracellular vesicles (EVs) may carry epigenetic changes, showing themselves as a potentially valuable non-invasive diagnostic liquid biopsy. We isolated and characterized circulating EVs of acute coronary syndrome (ACS) patients and assessed their role on DNA methylation in epigenetic modifications. METHODS: EVs were recovered from plasma of 19 ACS patients and 50 healthy subjects (HS). Flow cytometry, qRT-PCR, and Western blot (WB) were performed to evaluate both intra-vesicular and intra-cellular signals. ShinyGO, PANTHER, and STRING tools were used to perform GO and PPI network analyses. RESULTS: ACS-derived EVs showed increased levels of DNA methyltransferases (DNMTs) (p<0.001) and Ten-eleven translocation (TET) genes reduction. Specifically, de novo methylation transcripts, as DNMT3A and DNMT3B, were significantly increased in plasma ACS-EVs. DNA methylation analysis on PBMCs from healthy donors treated with HS- and ACS-derived EVs showed an important role of DNMTs carried by EVs. PPI network analysis evidenced that ACS-EVs induced changes in PBMC methylome. In the most enriched subnetwork, the hub gene SRC was connected to NOTCH1, FOXO3, CDC42, IKBKG, RXRA, DGKG, BAIAP2 genes that were showed to have many molecular effects on various cell types into onset of several CVDs. Modulation in gene expression after ACS-EVs treatment was confirmed for SRC, NOTCH1, FOXO3, RXRA, DGKG and BAIAP2 (p<0.05). CONCLUSIONS: Our data showed an important role for ACS-derived EVs in gene expression modulation through de novo DNA methylation signals, and modulating signalling pathways in target cells.


Subject(s)
Acute Coronary Syndrome , Extracellular Vesicles , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , Epigenesis, Genetic , Extracellular Vesicles/metabolism , Humans , I-kappa B Kinase/genetics , Leukocytes, Mononuclear/metabolism
12.
Front Bioeng Biotechnol ; 10: 902038, 2022.
Article in English | MEDLINE | ID: mdl-35757808

ABSTRACT

Cardiomyocyte renewal represents an unmet clinical need for cardiac regeneration. Stem cell paracrine therapy has attracted increasing attention to resurge rescue mechanisms within the heart. We previously characterized the paracrine effects that human amniotic fluid-derived stem cells (hAFSC) can exert to provide cardioprotection and enhance cardiac repair in preclinical models of myocardial ischemia and cardiotoxicity. Here, we analyze whether hAFSC secretome formulations, namely, hAFSC conditioned medium (hAFSC-CM) over extracellular vesicles (hAFSC-EVs) separated from it, can induce cardiomyocyte renewal. c-KIT+ hAFSC were obtained by leftover samples of II trimester prenatal amniocentesis (fetal hAFSC) and from clinical waste III trimester amniotic fluid during scheduled C-section procedures (perinatal hAFSC). hAFSC were primed under 1% O2 to enrich hAFSC-CM and EVs with cardioactive factors. Neonatal mouse ventricular cardiomyocytes (mNVCM) were isolated from cardiac tissue of R26pFUCCI2 mice with cell cycle fluorescent tagging by mutually exclusive nuclear signal. mNVCM were stimulated by fetal versus perinatal hAFSC-CM and hAFSC-EVs to identify the most promising formulation for in vivo assessment in a R26pFUCCI2 neonatal mouse model of myocardial infarction (MI) via intraperitoneal delivery. While the perinatal hAFSC secretome did not provide any significant cardiogenic effect, fetal hAFSC-EVs significantly sustained mNVCM transition from S to M phase by 2-fold, while triggering cytokinesis by 4.5-fold over vehicle-treated cells. Treated mNVCM showed disorganized expression of cardiac alpha-actinin, suggesting cytoskeletal re-arrangements prior to cell renewal, with a 40% significant downregulation of Cofilin-2 and a positive trend of polymerized F-Actin. Fetal hAFSC-EVs increased cardiomyocyte cell cycle progression by 1.8-fold in the 4-day-old neonatal left ventricle myocardium short term after MI; however, such effect was lost at the later stage. Fetal hAFSC-EVs were enriched with a short isoform of Agrin, a mediator of neonatal heart regeneration acting by YAP-related signaling; yet in vitro application of YAP inhibitor verteporfin partially affected EV paracrine stimulation on mNVCM. EVs secreted by developmentally juvenile fetal hAFSC can support cardiomyocyte renewal to some extension, via intercellular conveyance of candidates possibly involving Agrin in combination with other factors. These perinatal derivative promising cardiogenic effects need further investigation to define their specific mechanism of action and enhance their potential translation into therapeutic opportunity.

13.
Vascul Pharmacol ; 145: 106999, 2022 08.
Article in English | MEDLINE | ID: mdl-35597450

ABSTRACT

Inflammatory response following SARS-CoV-2 infection results in substantial increase of amounts of intravascular pro-coagulant extracellular vesicles (EVs) expressing tissue factor (CD142) on their surface. CD142-EV turned out to be useful as diagnostic biomarker in COVID-19 patients. Here we aimed at studying the prognostic capacity of CD142-EV in SARS-CoV-2 infection. Expression of CD142-EV was evaluated in 261 subjects admitted to hospital for pneumonia and with a positive molecular test for SARS-CoV-2. The study population consisted of a discovery cohort of selected patients (n = 60) and an independent validation cohort including unselected consecutive enrolled patients (n = 201). CD142-EV levels were correlated with post-hospitalization course of the disease and compared to the clinically available 4C Mortality Score as referral. CD142-EV showed a reliable performance to predict patient prognosis in the discovery cohort (AUC = 0.906) with an accuracy of 81.7%, that was confirmed in the validation cohort (AUC = 0.736). Kaplan-Meier curves highlighted a high discrimination power in unselected subjects with CD142-EV being able to stratify the majority of patients according to their prognosis. We obtained a comparable accuracy, being not inferior in terms of prediction of patients' prognosis and risk of mortality, with 4C Mortality Score. The expression of surface vesicular CD142 and its reliability as prognostic marker was technically validated using different immunocapture strategies and assays. The detection of CD142 on EV surface gains considerable interest as risk stratification tool to support clinical decision making in COVID-19.


Subject(s)
COVID-19 , Extracellular Vesicles , Biomarkers/metabolism , COVID-19/diagnosis , Extracellular Vesicles/metabolism , Humans , Reproducibility of Results , Risk Assessment/methods , SARS-CoV-2 , Thromboplastin/metabolism
14.
Eur J Clin Invest ; 52(6): e13769, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35316536

ABSTRACT

BACKGROUND: Microvesicles are vesicles shed by plasma membranes following cell activation and apoptosis. The role of lymphocyte-derived microvesicles in endothelial function remains poorly understood. METHODS: CD4+ T cells isolated from peripheral blood of healthy human donors were stimulated using anti-CD3/anti-CD28-coated beads. Proteomic profiling of microvesicles was performed using linear discriminant analysis (LDA) from activated T cells (MV.Act) and nonactivated T cells (MV.NAct). In addition, data processing analysis was performed using MaxQUANT workflow. Differentially expressed proteins found in MV.Act or MV.NAct samples with identification frequency = 100%, which were selected by both LDA (p < .01) and MaxQUANT (p < .01) workflows, were defined as "high-confidence" differentially expressed proteins. Functional effects of MV.Act on human primary microvascular endothelial cells were analysed. RESULTS: T cells released large amounts of microvesicles upon stimulation. Proteomic profiling of microvesicles using LDA identified 2279 proteins (n = 2110 and n = 851 proteins in MV.Act and MV.NAct, respectively). Protein-protein interaction network models reconstructed from both differentially expressed proteins (n = 594; LDA p ≤ .01) and "high-confidence" differentially expressed proteins (n = 98; p ≤ .01) revealed that MV.Act were enriched with proteins related to immune responses, protein translation, cytoskeleton organisation and TNFα-induced apoptosis. For instance, MV.Act were highly enriched with IFN-γ, a key proinflammatory pathway related to effector CD4+ T cells. Endothelial cell incubation with MV.Act induced superoxide generation, apoptosis, endothelial wound healing impairment and endothelial monolayer barrier disruption. CONCLUSIONS: T cell receptor-mediated activation of CD4+ T cells stimulates the release of microvesicles enriched with proteins involved in immune responses, inflammation and apoptosis. T cell-derived microvesicles alter microvascular endothelial function and barrier permeability, potentially promoting tissue inflammation.


Subject(s)
Cell-Derived Microparticles , Endothelial Cells , CD4-Positive T-Lymphocytes , Cell-Derived Microparticles/metabolism , Endothelial Cells/metabolism , Humans , Inflammation/metabolism , Proteomics , T-Lymphocytes
16.
J Cell Mol Med ; 25(16): 8074-8086, 2021 08.
Article in English | MEDLINE | ID: mdl-34288391

ABSTRACT

Second trimester foetal human amniotic fluid-derived stem cells (hAFS) have been shown to possess remarkable cardioprotective paracrine potential in different preclinical models of myocardial injury and drug-induced cardiotoxicity. The hAFS secretome, namely the total soluble factors released by cells in their conditioned medium (hAFS-CM), can also strongly sustain in vivo angiogenesis in a murine model of acute myocardial infarction (MI) and stimulates human endothelial colony-forming cells (ECFCs), the only truly recognized endothelial progenitor, to form capillary-like structures in vitro. Preliminary work demonstrated that the hypoxic hAFS secretome (hAFS-CMHypo ) triggers intracellular Ca2+ oscillations in human ECFCs, but the underlying mechanisms and the downstream Ca2+ -dependent effectors remain elusive. Herein, we found that the secretome obtained by hAFS undergoing hypoxic preconditioning induced intracellular Ca2+ oscillations by promoting extracellular Ca2+ entry through Transient Receptor Potential Vanilloid 4 (TRPV4). TRPV4-mediated Ca2+ entry, in turn, promoted the concerted interplay between inositol-1,4,5-trisphosphate- and nicotinic acid adenine dinucleotide phosphate-induced endogenous Ca2+ release and store-operated Ca2+ entry (SOCE). hAFS-CMHypo -induced intracellular Ca2+ oscillations resulted in the nuclear translocation of the Ca2+ -sensitive transcription factor p65 NF-κB. Finally, inhibition of either intracellular Ca2+ oscillations or NF-κB activity prevented hAFS-CMHypo -induced ECFC tube formation. These data shed novel light on the molecular mechanisms whereby hAFS-CMHypo induces angiogenesis, thus providing useful insights for future therapeutic strategies against ischaemic-related myocardial injury.


Subject(s)
Amniotic Fluid/metabolism , Calcium/metabolism , Culture Media, Conditioned/chemistry , Endothelial Cells/physiology , NF-kappa B/metabolism , Secretome , Stem Cells/cytology , Amniotic Fluid/chemistry , Cells, Cultured , Endothelial Cells/cytology , Humans , NF-kappa B/genetics , Protein Transport , Signal Transduction , Stem Cells/metabolism
17.
EBioMedicine ; 67: 103369, 2021 May.
Article in English | MEDLINE | ID: mdl-33971404

ABSTRACT

BACKGROUND: Coronavirus-2 (SARS-CoV-2) infection causes an acute respiratory syndrome accompanied by multi-organ damage that implicates a prothrombotic state leading to widespread microvascular clots. The causes of such coagulation abnormalities are unknown. The receptor tissue factor, also known as CD142, is often associated with cell-released extracellular vesicles (EV). In this study, we aimed to characterize surface antigens profile of circulating EV in COVID-19 patients and their potential implication as procoagulant agents. METHODS: We analyzed serum-derived EV from 67 participants who underwent nasopharyngeal swabs molecular test for suspected SARS-CoV-2 infection (34 positives and 33 negatives) and from 16 healthy controls (HC), as referral. A sub-analysis was performed on subjects who developed pneumonia (n = 28). Serum-derived EV were characterized for their surface antigen profile and tested for their procoagulant activity. A validation experiment was performed pre-treating EV with anti-CD142 antibody or with recombinant FVIIa. Serum TNF-α levels were measured by ELISA. FINDINGS: Profiling of EV antigens revealed a surface marker signature that defines circulating EV in COVID-19. A combination of seven surface molecules (CD49e, CD209, CD86, CD133/1, CD69, CD142, and CD20) clustered COVID (+) versus COVID (-) patients and HC. CD142 showed the highest discriminating performance at both multivariate models and ROC curve analysis. Noteworthy, we found that CD142 exposed onto surface of EV was biologically active. CD142 activity was higher in COVID (+) patients and correlated with TNF-α serum levels. INTERPRETATION: In SARS-CoV-2 infection the systemic inflammatory response results in cell-release of substantial amounts of procoagulant EV that may act as clotting initiation agents, contributing to disease severity. FUNDING: Cardiocentro Ticino Institute, Ente ospedaliero Cantonale, Lugano-Switzerland.


Subject(s)
COVID-19/complications , Extracellular Vesicles/immunology , Thromboplastin/metabolism , Thrombosis/blood , Adult , Aged , Aged, 80 and over , Antigens, Surface/analysis , Biomarkers/analysis , COVID-19/blood , COVID-19/immunology , Case-Control Studies , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Switzerland , Thrombosis/etiology , Thrombosis/immunology , Tumor Necrosis Factor-alpha/blood
18.
Theranostics ; 11(12): 5634-5649, 2021.
Article in English | MEDLINE | ID: mdl-33897872

ABSTRACT

Although a small number of cardiomyocytes may reenter the cell cycle after injury, the adult mammalian heart is incapable of a robust cardiomyocyte proliferation. Periostin, a secreted extracellular matrix protein, has been implicated as a regulator of cardiomyocyte proliferation; however, this role remains controversial. Alternative splicing of the human periostin gene results in 6 isoforms lacking sequences between exons 17 and 21, in addition to full-length periostin. We previously showed that exosomes (Exo) secreted by human cardiac explant-derived progenitor cells (CPC) carried periostin. Here, we aimed to investigate their cell cycle activity. Methods: CPC were derived as the cellular outgrowth of ex vivo cultured cardiac atrial explants. Exo were purified from CPC conditioned medium using size exclusion chromatography. Exosomal periostin was analyzed by Western blotting using a pair of antibodies (one raised against aa 537-836, and one raised against amino acids mapping at exon 17 of human periostin), by ELISA, and by cryo-EM with immune-gold labeling. Cell cycle activity was assessed in neonatal rat cardiomyocytes, in human induced pluripotent stem cell (iPS)-derived cardiomyocytes, and in adult rat cardiomyocytes after myocardial infarction. The role of periostin in cell cycle activity was investigated by transfecting donor CPC with a siRNA against this protein. Results: Periostin expression in CPC-secreted exosomes was detected using the antibody raised against aa 537-836 of the human protein, but not with the exon 17-specific antibody, consistent with an isoform lacking exon 17. Periostin was visualized on vesicle surfaces by cryo-EM and immune-gold labeling. CPC-derived exosomes induced cell proliferation in neonatal rat cardiomyocytes both in vitro and in vivo, in human iPS-derived cardiomyocytes, and in adult rat cardiomyocytes after myocardial infarction. Exo promoted phosphorylation of focal adhesion kinase (FAK), actin polymerization, and nuclear translocation of Yes-associated protein (YAP) in cardiomyocytes. Knocking down of periostin or YAP, or blocking FAK phosphorylation with PF-573228 nullified Exo-induced proliferation. A truncated human periostin peptide (aa 22-669), but not recombinant human full-length periostin, mimicked the pro-proliferative activity of exosomes. Conclusions: Our results show, for the first time, that CPC-secreted exosomes promote cardiomyocyte cell cycle-reentry via a short periostin isoform expressed on their surfaces, whereas recombinant full-length periostin does not. These findings highlight isoform-specific roles of periostin in cardiomyocyte proliferation.


Subject(s)
Cell Adhesion Molecules/metabolism , Cell Proliferation/physiology , Exosomes/metabolism , Myocytes, Cardiac/metabolism , Protein Isoforms/metabolism , Aged , Aged, 80 and over , Animals , Cell Cycle/physiology , Cells, Cultured , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Middle Aged , Myocardial Infarction/metabolism , Rats , Rats, Wistar
19.
Int J Mol Sci ; 22(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918297

ABSTRACT

We previously reported that c-KIT+ human amniotic-fluid derived stem cells obtained from leftover samples of routine II trimester prenatal diagnosis (fetal hAFS) are endowed with regenerative paracrine potential driving pro-survival, anti-fibrotic and proliferative effects. hAFS may also be isolated from III trimester clinical waste samples during scheduled C-sections (perinatal hAFS), thus offering a more easily accessible alternative when compared to fetal hAFS. Nonetheless, little is known about the paracrine profile of perinatal hAFS. Here we provide a detailed characterization of the hAFS total secretome (i.e., the entirety of soluble paracrine factors released by cells in the conditioned medium, hAFS-CM) and the extracellular vesicles (hAFS-EVs) within it, from II trimester fetal- versus III trimester perinatal cells. Fetal- and perinatal hAFS were characterized and subject to hypoxic preconditioning to enhance their paracrine potential. hAFS-CM and hAFS-EV formulations were analyzed for protein and chemokine/cytokine content, and the EV cargo was further investigated by RNA sequencing. The phenotype of fetal- and perinatal hAFS, along with their corresponding secretome formulations, overlapped; yet, fetal hAFS showed immature oxidative phosphorylation activity when compared to perinatal ones. The profiling of their paracrine cargo revealed some differences according to gestational stage and hypoxic preconditioning. Both cell sources provided formulations enriched with neurotrophic, immunomodulatory, anti-fibrotic and endothelial stimulating factors, and the immature fetal hAFS secretome was defined by a more pronounced pro-vasculogenic, regenerative, pro-resolving and anti-aging profile. Small RNA profiling showed microRNA enrichment in both fetal- and perinatal hAFS-EV cargo, with a stably- expressed pro-resolving core as a reference molecular signature. Here we confirm that hAFS represents an appealing source of regenerative paracrine factors; the selection of either fetal or perinatal hAFS secretome formulations for future paracrine therapy should be evaluated considering the specific clinical scenario.


Subject(s)
Fetal Stem Cells/metabolism , Pregnancy Trimester, Second/metabolism , Pregnancy Trimester, Third/metabolism , Proteome , Adult , Amniotic Fluid/cytology , Bodily Secretions , Extracellular Vesicles/ultrastructure , Female , Humans , Hypoxia/metabolism , Pregnancy
20.
Biology (Basel) ; 10(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925620

ABSTRACT

The use of extracellular vesicles as cell-free therapy is a promising approach currently investigated in several disease models. The intrinsic capacity of extracellular vesicles to encapsulate macromolecules within their lipid bilayer membrane-bound lumen is a characteristic exploited in drug delivery to transport active pharmaceutical ingredients. Besides their role as biological nanocarriers, extracellular vesicles have a specific tropism towards target cells, which is a key aspect in precision medicine. However, the little knowledge of the mechanisms governing the release of a cargo macromolecule in recipient cells and the Good Manufacturing Practice (GMP) grade scale-up manufacturing of extracellular vesicles are currently slowing their application as drug delivery nanocarriers. In this review, we summarize, from a cell biologist's perspective, the main evidence supporting the role of extracellular vesicles as promising carriers in drug delivery, and we report five key considerations that merit further investigation before translating Extracellular Vesicles (EVs) to clinical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...